[][com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=80408]], camposKey:0024-6093 2023-01-01 On real analogues of the Poincaré series00, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=76055]], camposKey:0004-2080 2022-01-01 Weil¿Poincaré series and topology of collections of valuations on rational double points297322, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=65304]], camposKey:1139-1138 2021-09-01 Pencils and critical loci on normal surfaces691714, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=51753]], camposKey:1432-1823 2020-01-01 Are algebraic links in the Poincaré sphere determined by their Alexander polynomials?593613, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=51752]], camposKey:0081-5438 2018-01-01 Integration over the space of functions and Poincaré series revisited146160, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1294]], camposKey:0025-584X 2017-01-01 On the topological type of a set of plane valuations with symmetries19251938, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=53257]], camposKey:1431-0635 2016-01-01 Equivariant Poincaré series and topology of valuations271286, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=69409]], camposKey:1431-0643 2016-01-01 EQUIVARIANT POINCARE SERIES AND TOPOLOGY OF VALUATIONS271286, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1304]], camposKey:1139-1138 2015-01-01 An equivariant Poincaré series of filtrations and monodromy zeta functions449467, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=3921]], camposKey:2218-6816 2015-01-01 On poincaré series of filtrations125139, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1312]], camposKey:0026-9255 2014-07-01 Hilbert function, generalized Poincar, series and topology of plane valuations403412, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1300]], camposKey:1139-1138 2014-07-01 On the topology of the image by a morphism of plane curve singularities369384, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1297]], camposKey:0004-2080 2014-04-01 Equivariant Poincare series of filtrations and topology4359, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=53240]], camposKey:0021-8693 2013-03-01 Poincaré series for filtrations defined by discrete valuations with arbitrary center6675, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1303]], camposKey:1139-1138 2013-01-01 Equivariant Poincar, series of filtrations241251, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1319]], camposKey:0016-2663 2011-12-01 Alexander polynomials and Poincar, series of sets of ideals271277, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=19758]], camposKey:1888-8860 2011-01-01 Imaginary: una mirada matemática8085, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1325]], camposKey:0129-167X 2010-01-01 Poincaré series of collections of plane valuations14611473, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1324]], camposKey:0002-9939 2009-01-01 On the relation between the generalized Poincare series and the Stohr zeta function5159, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1318]], camposKey:0016-2663 2008-04-01 Universal Abelian covers of rational surface singularities and multi-index filtrations8388, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1322]], camposKey:0001-8708 2008-01-01 Generating sequences and Poincare series for a finite set of plane divisorial valuations16321655, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1305]], camposKey:0026-9255 2007-01-01 Multi-index filtrations and generalized Poincare series193209, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1315]], camposKey:1609-3321 2007-01-01 ON POINCARE SERIES OF FILTRATIONS ON EQUIVARIANT FUNCTIONS OF TWO VARIABLES243255, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1321]], camposKey:1387-6694 2005-01-01 On the contact with the polar7478, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1295]], camposKey:0010-2571 2005-01-01 Poincare series of curves on rational surface singularities95102, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1317]], camposKey:0020-9910 2004-01-01 Poincare series of a rational surface singularity4153, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1311]], camposKey:0013-0915 2003-06-01 Poincare series for several plane divisorial valuations501509, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1313]], camposKey:0012-7094 2003-03-15 The Alexander polynomial of a plane curve singularity via the ring of functions on IT125156, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1310]], camposKey:0010-437X 2003-03-01 Special fibres and critical locus for a pencil of plane curve singularities6987, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1314]], camposKey:0129-167X 2003-02-01 The Alexander polynomial of a plane curve singularity and integrals with respect to the Euler characteristic4754, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=5755]], camposKey:0081-5438 2002-01-01 Integrals with respect Euler characteristic over speces of functions and the Alexander polynomial144157, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=6081]], camposKey:1072-3374 2001-01-01 On the monodromy at infinity of a plane curve and the poincaré series of its coordinate ring18391842, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1296]], camposKey:0036-0279 2000-11-01 Integration with respect to the Euler characteristic over a function space and the Alexander polynomial of a plane curve singularity11481149, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1323]], camposKey:0025-5874 2000-07-01 Saturation for valuations on two-dimensional regular local rings519550, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1316]], camposKey:0024-6107 1999-10-01 On generators of the semigroup of a plane curve singularity420430, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1308]], camposKey:0036-0279 1999-05-01 The Alexander polynomial of plane curve singularities and rings of functions on curves634635, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1302]], camposKey:0016-2663 1999-01-01 On the monodromy of a plane curve singularity and the Poincare series of the ring of functions on the curve5657, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=5763]], camposKey:0081-5438 1998-01-01 The extended semigroup of a plane curve singularity149167, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1298]], camposKey:0025-2611 1994-06-01 GORENSTEIN PROPERTY AND SYMMETRY FOR ONE-DIMENSIONAL LOCAL COHEN-MACAULAY RINGS405423, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1299]], camposKey:0010-437X 1994-01-01 A FACTORIZATION THEOREM FOR THE POLAR OF A CURVE WITH 2 BRANCHES327375, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1320]], camposKey:0076-0552 1994-01-01 AN ARITHMETICAL FACTORIZATION FOR THE CRITICAL POINT SET OF SOME MAP GERMS FROM C(2) TO C(2)61100, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1307]], camposKey:0002-9939 1990-03-01 THE SYMMETRY OF THE WEIERSTRASS GENERALIZED SEMIGROUPS AND AFFINE EMBEDDINGS627631, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=19755]], camposKey:1137-2141 1988-01-01 Aritmética de los semigrupos de Arf y saturados: aplicaciones161163, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1306]], camposKey:0025-2611 1988-01-01 Gorenstein curves and symmetry of the semigroup of values285296, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=1301]], camposKey:0025-2611 1987-01-01 The semigroup of values of a curve singularity with several branches347374, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=19757]], camposKey:0213-8743 1986-01-01 Maximal elements and symmetry of the semigroup of values of a curve singularity with several branches1214][CapitolsLlib{id=com.sigma.fs3.argos.domain.gpc.GpcCapitolsLlibPK[ifcactivitat=CAP, ifccomptador=19259]},camposKey: 67 74 On the zeta functions of a meromorphic germ in two variables 978-0-8218-3613-2Geometry, Topology, and Mathematical Physics 1 2004-01-01 AMS][][Llibres{id=com.sigma.fs3.argos.domain.gpc.GpcLlibresPK[ifcactivitat=LLI, ifccomptador=105451],camposKey=84-8448-074-7Introducción al álgebra: soluciones de los problemas 1 2000-01-01 }, Llibres{id=com.sigma.fs3.argos.domain.gpc.GpcLlibresPK[ifcactivitat=LLI, ifccomptador=105450],camposKey=84-7762-866-1Introducción al álgebra: Anillos, factorización y teoría de cuerpos 1 1999-01-01 }, Llibres{id=com.sigma.fs3.argos.domain.gpc.GpcLlibresPK[ifcactivitat=LLI, ifccomptador=113987],camposKey=84-7491-428-0Introducción al álebra (Vol I) 1 1993-01-01 Editorial Complutense}][][][com.sigma.fs3.argos.domain.gpc.Manuals[id=com.sigma.fs3.argos.domain.gpc.GpcManualsPK[ifcactivitat=MAN, ifccomptador=49]]][][com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=62595]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=64734]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=61876]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=62990]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=57081]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=63628]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=63512]]][com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=62595]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=64734]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=61876]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=62990]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=57081]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=63628]], com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBeca[id=com.sigma.fs3.argos.domain.gpc.GpcAltresAjutsBecaPK[ifcactivitat=AAB, ifccomptador=63512]]][][][com.sigma.fs3.argos.domain.gpc.GpcTesis[id=com.sigma.fs3.argos.domain.gpc.GpcTesisPK[ifcactivitat=TES, ifccomptador=2145630511]], com.sigma.fs3.argos.domain.gpc.GpcTesis[id=com.sigma.fs3.argos.domain.gpc.GpcTesisPK[ifcactivitat=TES, ifccomptador=2145629484]]][][][][][][com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=1415]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=1414]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=146]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=147]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=148]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=145]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=149]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=150]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=144]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=151]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=152]], com.sigma.fs3.argos.domain.gpc.GpcComissioAssessor[id=com.sigma.fs3.argos.domain.gpc.GpcComissioAssessorPK[ifcactivitat=COM, ifccomptador=153]]][][com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2ed64c54, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@49749cd6, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@18c0bc61, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@24da5c8b, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@387210a8, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@550db95c, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@48b32428, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@3efb07b1, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@1624b796, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2edb3b57, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@7f18d8c0, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@19b88e1d, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2a9302bb, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@5de5853d, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@64028899][com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2cb025dd, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@360c791, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@507c2b86, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@4358ea9, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2986cd3f, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2cdfcbd1, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@1d4ee5d7, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@35266011, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@2a56bcbf, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@78856b67, com.sigma.investigacion.cawdos.utilidades.CongresoYSusAsociaciones@128f49fd][com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ConvenisPPC@372814][com.sigma.fs3.argos.domain.gpc.GpcCursosSeminaris[id=com.sigma.fs3.argos.domain.gpc.GpcCursosSeminarisPK[ifcactivitat=CUR, ifccomptador=317]]][com.sigma.fs3.argos.domain.gpc.GpcCursosSeminaris[id=com.sigma.fs3.argos.domain.gpc.GpcCursosSeminarisPK[ifcactivitat=CUR, ifccomptador=317]]][com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=70]], com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=71]], com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=56871]]][com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=70]], com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=71]], com.sigma.fs3.argos.domain.gpc.EstadesFora[id=com.sigma.fs3.argos.domain.commons.ArgosPK[act=ESF, cont=56871]]][com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=102]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=108]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=107]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=105]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=101]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=104]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=106]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=103]], com.sigma.fs3.argos.domain.gpc.GpcExpGestionId[id=com.sigma.fs3.argos.domain.gpc.GpcExpGestionIdPK[ifcactivitat=EXP, ifccomptador=100]]][][][com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@5bc566], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4675f2], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@414e51], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@45f81f], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4136cf], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4125ff], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413d96], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413fb9], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413fd7], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413c0b], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4609d2], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413e9e], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4608f9], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@468b78], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413f5a], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4120d1], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@460717], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4605ac], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@46047e], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@411e23], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@45f43d], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@468b79], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@45f36a], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@45f332], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413ba0], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@413ad6]][][][][][IftpertinEntitats[ iftpertinEntitatsPK=IftpertinEntitatsPK[ ifcactivitat=PEC, ifccomptador=46 ] ], IftpertinEntitats[ iftpertinEntitatsPK=IftpertinEntitatsPK[ ifcactivitat=PEC, ifccomptador=47 ] ]][com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135bc, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135bd, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135b7, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135b8, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135b9, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135ba, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@135bb, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@15e67, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@15f17, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@15d5b, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@15b8f, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@156ce, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@15442, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@151b1, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14faf, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14b87, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14dd1, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@13c0e, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@13cad, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@13ca3, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@13c05, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14049, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14054, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14133, com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@1412e][]