Inicio > MARCOS NAVEIRA, JOSE ENRIQUE

MARCOS NAVEIRA, JOSE ENRIQUE

PROFESOR CONTRATADO DOCTOR
Algebra, Análisis Matemático, Geometría y Topología
 
marcosje@uva.es

Índice H en Scopus: 3
 

[][com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56824]], camposKey:0938-1279 2015-11-22 Some permutation polynomials over finite fields465474, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56825]], camposKey:1071-5797 2011-01-01 Specific permutation polynomials over finite fields105112, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=60842]], camposKey:0139-9918 2006-01-01 The algebraic closure of a p-adic number field is a complete topological field317331, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56827]], camposKey:0166-8641 2003-02-15 The maximum ring topology on the rational number field among those for which the sequence 1/n converges to zero157167, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56826]], camposKey:0011-4642 2003-01-01 A completion of Z is a field689706, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56828]], camposKey:0016-2736 2003-01-01 Erratum: Locally unbounded topological fields with topological nilpotents (Fundamenta Mathematicae (2002) 173 (21-32))9596, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56829]], camposKey:0016-2736 2002-01-01 Locally unbounded topological fields with topological nilpotents2132, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56830]], camposKey:0022-4049 2001-08-08 Lacunar ring topologies and maximum ring topologies with a prescribed convergent sequence5385, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56831]], camposKey:0022-4049 1999-05-27 Topological completions of the field of rational numbers which consist of Liouville numbers and rational numbers251277, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56832]], camposKey:0022-4049 1998-08-03 The field of rational numbers is algebraically closed in some of its topological completions149172, com.sigma.fs3.argos.domain.gpc.GpcArticlesRev[id=com.sigma.fs3.argos.domain.gpc.GpcArticlesRevPK[ifcactivitat=ARE, ifccomptador=56833]], camposKey:0022-4049 1996-05-13 An example of a nontrivial ring topology on the algebraic closure of a finite field265278][][][Llibres{id=com.sigma.fs3.argos.domain.gpc.GpcLlibresPK[ifcactivitat=LLI, ifccomptador=116805],camposKey=ISBN-0061Anillos cuyos módulos descomponen 1 1986-01-01 José Enrique Marcos Naveira}][][][][][][][][][][][][][][][][][][][][][][][][][][][com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@414e5d], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@41244d], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@412238], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@4604b9], com.sigma.investigacion.cawdos.entities.ayudaInvestigacion.ProjectesPPC[id=com.sigma.fs3.argos.domain.gpc.ayudasrecerca.ProjectesPPCId@45f45e]][][][][][][com.sigma.fs3.argos.domain.gpc.altres.ProjecteInnovacio@14131][]

AYUDA A LA INVESTIGACIÓN

PUBLICACIONES

Artículos de revista (11)

Marcos J. Some permutation polynomials over finite fields . APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING 2015; 26(5): 465-474

Enlace a la publicación
Ver Todos

Libros (1)

Marcos Naveira, José Enrique. Anillos cuyos módulos descomponen. José Enrique Marcos Naveira; 1986
Ver Todos
 

AYUDA A LA INVESTIGACIÓN

Proyectos (5)

COMBINATORIA Y COMPUTACIÓN EN ÁLGEBRA CONMUTATIVA Y LINEAL (COCOACOL). Equipo Investigadores: GIMENEZ MARTIN, PHILIPPE THIERRY (IP); DOMINGUEZ GOMEZ, JESUS MANUEL; MARCOS NAVEIRA, JOSE ENRIQUE; REGUERA LOPEZ, ANA JOSE; PEREZ GONZALEZ, MARIA DEL PILAR; PISONERO PEREZ, MIRIAM; MARTINEZ MARTINEZ, MARIA DEL CARMEN; CARRIEGOS VIEIRA, MIGUEL; GOMEZ PEREZ, JAVIER; GRANJA BARON, ANGEL; SAEZ SCHWEDT, ANDRES; TOCHIMANI TIRO, AZUCENA. VA128G18. Entidades Participantes: UNIVERSIDAD DE VALLADOLID (UVa). Entidades Financiadoras: JUNTA DE CASTILLA Y LEÓN -CONSEJERÍA DE EDUCACIÓN. 05/06/2018-30/09/2020

JCYL-1
Ver Todos
 
Cargando información ...
Universidad de Valladolid - Copyright Universidad de Valladolid - Todos los derechos reservados